Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Med ; 12(8)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37109370

RESUMO

Purpose: COVID-19 presents complex pathophysiology, and evidence collected points towards an intricate interaction between viral-dependent and individual immunological mechanisms. Identifying phenotypes through clinical and biological markers may provide a better understanding of the subjacent mechanisms and an early patient-tailored characterization of illness severity. Methods: A multicenter prospective cohort study was performed in 5 hospitals in Portugal and Brazil for one year between 2020-2021. All adult patients with an Intensive Care Unit admission with SARS-CoV-2 pneumonia were eligible. COVID-19 was diagnosed using clinical and radiologic criteria with a SARS-CoV-2 positive RT-PCR test. A two-step hierarchical cluster analysis was made using several class-defining variables. Results: 814 patients were included. The cluster analysis revealed a three-class model, allowing for the definition of three distinct COVID-19 phenotypes: 407 patients in phenotype A, 244 patients in phenotype B, and 163 patients in phenotype C. Patients included in phenotype A were significantly older, with higher baseline inflammatory biomarkers profile, and a significantly higher requirement of organ support and mortality rate. Phenotypes B and C demonstrated some overlapping clinical characteristics but different outcomes. Phenotype C patients presented a lower mortality rate, with consistently lower C-reactive protein, but higher procalcitonin and interleukin-6 serum levels, describing an immunological profile significantly different from phenotype B. Conclusions: Severe COVID-19 patients exhibit three different clinical phenotypes with distinct profiles and outcomes. Their identification could have an impact on patients' care, justifying different therapy responses and inconsistencies identified across different randomized control trial results.

2.
Clin J Am Soc Nephrol ; 17(5): 643-654, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35483733

RESUMO

BACKGROUND AND OBJECTIVES: Patients who were hospitalized with coronavirus disease 2019 (COVID-19) infection are at high risk of AKI and KRT, especially in the presence of CKD. The Dapagliflozin in Respiratory Failure in Patients with COVID-19 (DARE-19) trial showed that in patients hospitalized with COVID-19, treatment with dapagliflozin versus placebo resulted in numerically fewer participants who experienced organ failure or death, although these differences were not statistically significant. We performed a secondary analysis of the DARE-19 trial to determine the efficacy and safety of dapagliflozin on kidney outcomes in the overall population and in prespecified subgroups of participants defined by baseline eGFR. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS: The DARE-19 trial randomized 1250 patients who were hospitalized (231 [18%] had eGFR <60 ml/min per 1.73 m2) with COVID-19 and cardiometabolic risk factors to dapagliflozin or placebo. Dual primary outcomes (time to new or worsened organ dysfunction or death, and a hierarchical composite end point of recovery [change in clinical status by day 30]), and the key secondary kidney outcome (composite of AKI, KRT, or death), and safety were assessed in participants with baseline eGFR <60 and ≥60 ml/min per 1.73 m2. RESULTS: The effect of dapagliflozin versus placebo on the primary prevention outcome (hazard ratio, 0.80; 95% confidence interval, 0.58 to 1.10), primary recovery outcome (win ratio, 1.09; 95% confidence interval, 0.97 to 1.22), and the composite kidney outcome (hazard ratio, 0.74; 95% confidence interval, 0.50 to 1.07) were consistent across eGFR subgroups (P for interaction: 0.98, 0.67, and 0.44, respectively). The effects of dapagliflozin on AKI were also similar in participants with eGFR <60 ml/min per 1.73 m2 (hazard ratio, 0.71; 95% confidence interval, 0.29 to 1.77) and ≥60 ml/min per 1.73 m2 (hazard ratio, 0.69; 95% confidence interval, 0.37 to 1.29). Dapagliflozin was well tolerated in participants with eGFR <60 and ≥60 ml/min per 1.73 m2. CONCLUSIONS: The effects of dapagliflozin on primary and secondary outcomes in hospitalized participants with COVID-19 were consistent in those with eGFR below/above 60 ml/min per 1.73 m2. Dapagliflozin was well tolerated and did not increase the risk of AKI in participants with eGFR below or above 60 ml/min per 1.73 m2.


Assuntos
Injúria Renal Aguda , COVID-19 , Diabetes Mellitus Tipo 2 , Inibidores do Transportador 2 de Sódio-Glicose , Humanos , COVID-19/complicações , Diabetes Mellitus Tipo 2/complicações , Inibidores do Transportador 2 de Sódio-Glicose/efeitos adversos , Rim , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/complicações
3.
Lancet ; 397(10291): 2253-2263, 2021 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-34097856

RESUMO

BACKGROUND: COVID-19 is associated with a prothrombotic state leading to adverse clinical outcomes. Whether therapeutic anticoagulation improves outcomes in patients hospitalised with COVID-19 is unknown. We aimed to compare the efficacy and safety of therapeutic versus prophylactic anticoagulation in this population. METHODS: We did a pragmatic, open-label (with blinded adjudication), multicentre, randomised, controlled trial, at 31 sites in Brazil. Patients (aged ≥18 years) hospitalised with COVID-19 and elevated D-dimer concentration, and who had COVID-19 symptoms for up to 14 days before randomisation, were randomly assigned (1:1) to receive either therapeutic or prophylactic anticoagulation. Therapeutic anticoagulation was in-hospital oral rivaroxaban (20 mg or 15 mg daily) for stable patients, or initial subcutaneous enoxaparin (1 mg/kg twice per day) or intravenous unfractionated heparin (to achieve a 0·3-0·7 IU/mL anti-Xa concentration) for clinically unstable patients, followed by rivaroxaban to day 30. Prophylactic anticoagulation was standard in-hospital enoxaparin or unfractionated heparin. The primary efficacy outcome was a hierarchical analysis of time to death, duration of hospitalisation, or duration of supplemental oxygen to day 30, analysed with the win ratio method (a ratio >1 reflects a better outcome in the therapeutic anticoagulation group) in the intention-to-treat population. The primary safety outcome was major or clinically relevant non-major bleeding through 30 days. This study is registered with ClinicalTrials.gov (NCT04394377) and is completed. FINDINGS: From June 24, 2020, to Feb 26, 2021, 3331 patients were screened and 615 were randomly allocated (311 [50%] to the therapeutic anticoagulation group and 304 [50%] to the prophylactic anticoagulation group). 576 (94%) were clinically stable and 39 (6%) clinically unstable. One patient, in the therapeutic group, was lost to follow-up because of withdrawal of consent and was not included in the primary analysis. The primary efficacy outcome was not different between patients assigned therapeutic or prophylactic anticoagulation, with 28 899 (34·8%) wins in the therapeutic group and 34 288 (41·3%) in the prophylactic group (win ratio 0·86 [95% CI 0·59-1·22], p=0·40). Consistent results were seen in clinically stable and clinically unstable patients. The primary safety outcome of major or clinically relevant non-major bleeding occurred in 26 (8%) patients assigned therapeutic anticoagulation and seven (2%) assigned prophylactic anticoagulation (relative risk 3·64 [95% CI 1·61-8·27], p=0·0010). Allergic reaction to the study medication occurred in two (1%) patients in the therapeutic anticoagulation group and three (1%) in the prophylactic anticoagulation group. INTERPRETATION: In patients hospitalised with COVID-19 and elevated D-dimer concentration, in-hospital therapeutic anticoagulation with rivaroxaban or enoxaparin followed by rivaroxaban to day 30 did not improve clinical outcomes and increased bleeding compared with prophylactic anticoagulation. Therefore, use of therapeutic-dose rivaroxaban, and other direct oral anticoagulants, should be avoided in these patients in the absence of an evidence-based indication for oral anticoagulation. FUNDING: Coalition COVID-19 Brazil, Bayer SA.


Assuntos
Anticoagulantes/uso terapêutico , Tratamento Farmacológico da COVID-19 , COVID-19/sangue , Enoxaparina/uso terapêutico , Heparina/uso terapêutico , Rivaroxabana/efeitos adversos , Rivaroxabana/uso terapêutico , Adulto , Idoso , Coagulação Sanguínea/efeitos dos fármacos , Brasil/epidemiologia , Determinação de Ponto Final , Feminino , Produtos de Degradação da Fibrina e do Fibrinogênio , Hemorragia/induzido quimicamente , Hospitalização , Humanos , Masculino , Pessoa de Meia-Idade , Alta do Paciente , SARS-CoV-2 , Resultado do Tratamento
5.
Crit Care ; 18(4): R156, 2014 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-25047960

RESUMO

INTRODUCTION: Sedation overuse is frequent and possibly associated with poor outcomes in the intensive care unit (ICU) patients. However, the association of early oversedation with clinical outcomes has not been thoroughly evaluated. The aim of this study was to assess the association of early sedation strategies with outcomes of critically ill adult patients under mechanical ventilation (MV). METHODS: A secondary analysis of a multicenter prospective cohort conducted in 45 Brazilian ICUs, including adult patients requiring ventilatory support and sedation in the first 48 hours of ICU admissions, was performed. Sedation depth was evaluated after 48 hours of MV. Multivariate analysis was used to identify variables associated with hospital mortality. RESULTS: A total of 322 patients were evaluated. Overall, ICU and hospital mortality rates were 30.4% and 38.8%, respectively. Deep sedation was observed in 113 patients (35.1%). Longer duration of ventilatory support was observed (7 (4 to 10) versus 5 (3 to 9) days, P = 0.041) and more tracheostomies were performed in the deep sedation group (38.9% versus 22%, P = 0.001) despite similar PaO2/FiO2 ratios and acute respiratory distress syndrome (ARDS) severity. In a multivariate analysis, age (Odds Ratio (OR) 1.02; 95% confidence interval (CI) 1.00 to 1.03), Charlson Comorbidity Index >2 (OR 2.06; 95% CI, 1.44 to 2.94), Simplified Acute Physiology Score 3 (SAPS 3) score (OR 1.02; CI 95%, 1.00 to 1.04), severe ARDS (OR 1.44; CI 95%, 1.09 to 1.91) and deep sedation (OR 2.36; CI 95%, 1.31 to 4.25) were independently associated with increased hospital mortality. CONCLUSIONS: Early deep sedation is associated with adverse outcomes and constitutes an independent predictor of hospital mortality in mechanically ventilated patients.


Assuntos
Sedação Profunda/mortalidade , Sedação Profunda/tendências , Mortalidade Hospitalar/tendências , Unidades de Terapia Intensiva/tendências , Respiração Artificial/mortalidade , Respiração Artificial/tendências , Adulto , Idoso , Estudos de Coortes , Sedação Profunda/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Fatores de Tempo , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...